Backtesting Indicators of a Swing Trading ... - Forex Academy

Former investment bank FX trader: Risk management part II

Former investment bank FX trader: Risk management part II
Firstly, thanks for the overwhelming comments and feedback. Genuinely really appreciated. I am pleased 500+ of you find it useful.
If you didn't read the first post you can do so here: risk management part I. You'll need to do so in order to make sense of the topic.
As ever please comment/reply below with questions or feedback and I'll do my best to get back to you.
Part II
  • Letting stops breathe
  • When to change a stop
  • Entering and exiting winning positions
  • Risk:reward ratios
  • Risk-adjusted returns

Letting stops breathe

We talked earlier about giving a position enough room to breathe so it is not stopped out in day-to-day noise.
Let’s consider the chart below and imagine you had a trailing stop. It would be super painful to miss out on the wider move just because you left a stop that was too tight.

Imagine being long and stopped out on a meaningless retracement ... ouch!
One simple technique is simply to look at your chosen chart - let’s say daily bars. And then look at previous trends and use the measuring tool. Those generally look something like this and then you just click and drag to measure.
For example if we wanted to bet on a downtrend on the chart above we might look at the biggest retracement on the previous uptrend. That max drawdown was about 100 pips or just under 1%. So you’d want your stop to be able to withstand at least that.
If market conditions have changed - for example if CVIX has risen - and daily ranges are now higher you should incorporate that. If you know a big event is coming up you might think about that, too. The human brain is a remarkable tool and the power of the eye-ball method is not to be dismissed. This is how most discretionary traders do it.
There are also more analytical approaches.
Some look at the Average True Range (ATR). This attempts to capture the volatility of a pair, typically averaged over a number of sessions. It looks at three separate measures and takes the largest reading. Think of this as a moving average of how much a pair moves.
For example, below shows the daily move in EURUSD was around 60 pips before spiking to 140 pips in March. Conditions were clearly far more volatile in March. Accordingly, you would need to leave your stop further away in March and take a correspondingly smaller position size.

ATR is available on pretty much all charting systems
Professional traders tend to use standard deviation as a measure of volatility instead of ATR. There are advantages and disadvantages to both. Averages are useful but can be misleading when regimes switch (see above chart).
Once you have chosen a measure of volatility, stop distance can then be back-tested and optimised. For example does 2x ATR work best or 5x ATR for a given style and time horizon?
Discretionary traders may still eye-ball the ATR or standard deviation to get a feeling for how it has changed over time and what ‘normal’ feels like for a chosen study period - daily, weekly, monthly etc.

Reasons to change a stop

As a general rule you should be disciplined and not change your stops. Remember - losers average losers. This is really hard at first and we’re going to look at that in more detail later.
There are some good reasons to modify stops but they are rare.
One reason is if another risk management process demands you stop trading and close positions. We’ll look at this later. In that case just close out your positions at market and take the loss/gains as they are.
Another is event risk. If you have some big upcoming data like Non Farm Payrolls that you know can move the market +/- 150 pips and you have no edge going into the release then many traders will take off or scale down their positions. They’ll go back into the positions when the data is out and the market has quietened down after fifteen minutes or so. This is a matter of some debate - many traders consider it a coin toss and argue you win some and lose some and it all averages out.
Trailing stops can also be used to ‘lock in’ profits. We looked at those before. As the trade moves in your favour (say up if you are long) the stop loss ratchets with it. This means you may well end up ‘stopping out’ at a profit - as per the below example.

The mighty trailing stop loss order
It is perfectly reasonable to have your stop loss move in the direction of PNL. This is not exposing you to more risk than you originally were comfortable with. It is taking less and less risk as the trade moves in your favour. Trend-followers in particular love trailing stops.
One final question traders ask is what they should do if they get stopped out but still like the trade. Should they try the same trade again a day later for the same reasons? Nope. Look for a different trade rather than getting emotionally wed to the original idea.
Let’s say a particular stock looked cheap based on valuation metrics yesterday, you bought, it went down and you got stopped out. Well, it is going to look even better on those same metrics today. Maybe the market just doesn’t respect value at the moment and is driven by momentum. Wait it out.
Otherwise, why even have a stop in the first place?

Entering and exiting winning positions

Take profits are the opposite of stop losses. They are also resting orders, left with the broker, to automatically close your position if it reaches a certain price.
Imagine I’m long EURUSD at 1.1250. If it hits a previous high of 1.1400 (150 pips higher) I will leave a sell order to take profit and close the position.
The rookie mistake on take profits is to take profit too early. One should start from the assumption that you will win on no more than half of your trades. Therefore you will need to ensure that you win more on the ones that work than you lose on those that don’t.

Sad to say but incredibly common: retail traders often take profits way too early
This is going to be the exact opposite of what your emotions want you to do. We are going to look at that in the Psychology of Trading chapter.
Remember: let winners run. Just like stops you need to know in advance the level where you will close out at a profit. Then let the trade happen. Don’t override yourself and let emotions force you to take a small profit. A classic mistake to avoid.
The trader puts on a trade and it almost stops out before rebounding. As soon as it is slightly in the money they spook and cut out, instead of letting it run to their original take profit. Do not do this.

Entering positions with limit orders

That covers exiting a position but how about getting into one?
Take profits can also be left speculatively to enter a position. Sometimes referred to as “bids” (buy orders) or “offers” (sell orders). Imagine the price is 1.1250 and the recent low is 1.1205.
You might wish to leave a bid around 1.2010 to enter a long position, if the market reaches that price. This way you don’t need to sit at the computer and wait.
Again, typically traders will use tech analysis to identify attractive levels. Again - other traders will cluster with your orders. Just like the stop loss we need to bake that in.
So this time if we know everyone is going to buy around the recent low of 1.1205 we might leave the take profit bit a little bit above there at 1.1210 to ensure it gets done. Sure it costs 5 more pips but how mad would you be if the low was 1.1207 and then it rallied a hundred points and you didn’t have the trade on?!
There are two more methods that traders often use for entering a position.
Scaling in is one such technique. Let’s imagine that you think we are in a long-term bulltrend for AUDUSD but experiencing a brief retracement. You want to take a total position of 500,000 AUD and don’t have a strong view on the current price action.
You might therefore leave a series of five bids of 100,000. As the price moves lower each one gets hit. The nice thing about scaling in is it reduces pressure on you to pick the perfect level. Of course the risk is that not all your orders get hit before the price moves higher and you have to trade at-market.
Pyramiding is the second technique. Pyramiding is for take profits what a trailing stop loss is to regular stops. It is especially common for momentum traders.

Pyramiding into a position means buying more as it goes in your favour
Again let’s imagine we’re bullish AUDUSD and want to take a position of 500,000 AUD.
Here we add 100,000 when our first signal is reached. Then we add subsequent clips of 100,000 when the trade moves in our favour. We are waiting for confirmation that the move is correct.
Obviously this is quite nice as we humans love trading when it goes in our direction. However, the drawback is obvious: we haven’t had the full amount of risk on from the start of the trend.
You can see the attractions and drawbacks of both approaches. It is best to experiment and choose techniques that work for your own personal psychology as these will be the easiest for you to stick with and build a disciplined process around.

Risk:reward and win ratios

Be extremely skeptical of people who claim to win on 80% of trades. Most traders will win on roughly 50% of trades and lose on 50% of trades. This is why risk management is so important!
Once you start keeping a trading journal you’ll be able to see how the win/loss ratio looks for you. Until then, assume you’re typical and that every other trade will lose money.
If that is the case then you need to be sure you make more on the wins than you lose on the losses. You can see the effect of this below.

A combination of win % and risk:reward ratio determine if you are profitable
A typical rule of thumb is that a ratio of 1:3 works well for most traders.
That is, if you are prepared to risk 100 pips on your stop you should be setting a take profit at a level that would return you 300 pips.
One needn’t be religious about these numbers - 11 pips and 28 pips would be perfectly fine - but they are a guideline.
Again - you should still use technical analysis to find meaningful chart levels for both the stop and take profit. Don’t just blindly take your stop distance and do 3x the pips on the other side as your take profit. Use the ratio to set approximate targets and then look for a relevant resistance or support level in that kind of region.

Risk-adjusted returns

Not all returns are equal. Suppose you are examining the track record of two traders. Now, both have produced a return of 14% over the year. Not bad!
The first trader, however, made hundreds of small bets throughout the year and his cumulative PNL looked like the left image below.
The second trader made just one bet — he sold CADJPY at the start of the year — and his PNL looked like the right image below with lots of large drawdowns and volatility.
Would you rather have the first trading record or the second?
If you were investing money and betting on who would do well next year which would you choose? Of course all sensible people would choose the first trader. Yet if you look only at returns one cannot distinguish between the two. Both are up 14% at that point in time. This is where the Sharpe ratio helps .
A high Sharpe ratio indicates that a portfolio has better risk-adjusted performance. One cannot sensibly compare returns without considering the risk taken to earn that return.
If I can earn 80% of the return of another investor at only 50% of the risk then a rational investor should simply leverage me at 2x and enjoy 160% of the return at the same level of risk.
This is very important in the context of Execution Advisor algorithms (EAs) that are popular in the retail community. You must evaluate historic performance by its risk-adjusted return — not just the nominal return. Incidentally look at the Sharpe ratio of ones that have been live for a year or more ...
Otherwise an EA developer could produce two EAs: the first simply buys at 1000:1 leverage on January 1st ; and the second sells in the same manner. At the end of the year, one of them will be discarded and the other will look incredible. Its risk-adjusted return, however, would be abysmal and the odds of repeated success are similarly poor.

Sharpe ratio

The Sharpe ratio works like this:
  • It takes the average returns of your strategy;
  • It deducts from these the risk-free rate of return i.e. the rate anyone could have got by investing in US government bonds with very little risk;
  • It then divides this total return by its own volatility - the more smooth the return the higher and better the Sharpe, the more volatile the lower and worse the Sharpe.
For example, say the return last year was 15% with a volatility of 10% and US bonds are trading at 2%. That gives (15-2)/10 or a Sharpe ratio of 1.3. As a rule of thumb a Sharpe ratio of above 0.5 would be considered decent for a discretionary retail trader. Above 1 is excellent.
You don’t really need to know how to calculate Sharpe ratios. Good trading software will do this for you. It will either be available in the system by default or you can add a plug-in.

VAR

VAR is another useful measure to help with drawdowns. It stands for Value at Risk. Normally people will use 99% VAR (conservative) or 95% VAR (aggressive). Let’s say you’re long EURUSD and using 95% VAR. The system will look at the historic movement of EURUSD. It might spit out a number of -1.2%.

A 5% VAR of -1.2% tells you you should expect to lose 1.2% on 5% of days, whilst 95% of days should be better than that
This means it is expected that on 5 days out of 100 (hence the 95%) the portfolio will lose 1.2% or more. This can help you manage your capital by taking appropriately sized positions. Typically you would look at VAR across your portfolio of trades rather than trade by trade.
Sharpe ratios and VAR don’t give you the whole picture, though. Legendary fund manager, Howard Marks of Oaktree, notes that, while tools like VAR and Sharpe ratios are helpful and absolutely necessary, the best investors will also overlay their own judgment.
Investors can calculate risk metrics like VaR and Sharpe ratios (we use them at Oaktree; they’re the best tools we have), but they shouldn’t put too much faith in them. The bottom line for me is that risk management should be the responsibility of every participant in the investment process, applying experience, judgment and knowledge of the underlying investments.Howard Marks of Oaktree Capital
What he’s saying is don’t misplace your common sense. Do use these tools as they are helpful. However, you cannot fully rely on them. Both assume a normal distribution of returns. Whereas in real life you get “black swans” - events that should supposedly happen only once every thousand years but which actually seem to happen fairly often.
These outlier events are often referred to as “tail risk”. Don’t make the mistake of saying “well, the model said…” - overlay what the model is telling you with your own common sense and good judgment.

Coming up in part III

Available here
Squeezes and other risks
Market positioning
Bet correlation
Crap trades, timeouts and monthly limits

***
Disclaimer:This content is not investment advice and you should not place any reliance on it. The views expressed are the author's own and should not be attributed to any other person, including their employer.
submitted by getmrmarket to Forex [link] [comments]

When will we bottom out?

PART 2 : https://www.reddit.com/wallstreetbets/comments/g0sd44/what_is_the_bottom/
PART 3: https://www.reddit.com/wallstreetbets/comments/g2enz2/why_the_printer_must_continue/
Edit: By popular demand, the too long didn't read is now at the top
TL;DR
SPY 220p 11/20
This will likely be a multi-part series. It should be noted that I am no expert by any means, I'm actually quite new to this, it is just an elementary analysis of patterns in price and time. I am not a financial advisor, and this is not advice for a person to enter trades upon.
The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this DD, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. We will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The market is technically open 24-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy.
Some important terms to keep in mind:
§ Discrete – terminal points at the extremes of ranges
§ Secondary Discrete – quantified retracement or correction between two discrete
§ Longs (asset appreciation) and shorts (asset depreciation)
- Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
§ Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes because of levels of fear. Allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation.
Therefore, due to the relatively high volume on the 23rd of March, we can safely determine that a low WAS NOT reached.
§ VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend is imminent.
– Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw an uptrend line on the SPY chart, but it is possible to correctly draw a downtrend – indicating that the overall trend is downwards.
Now that we have determined that the overall trend is downwards, the next issue is the question of when SPY will bottom out.
Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will complete our analysis of time by measuring it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
Yearly Lows: 12/31/2000, 9/21/2001, 10/9/2002, 3/11/2003, 8/2/2004, 4/15/2005, 6/12/2006, 3/5/2007, 11/17/2008, 3/9/2009, 7/2/10, 10/3/11, 1/1/12, 1/1/13, 2/3/14, 9/28/15, 2/8/16, 1/3/17, 12/24/18, 6/3/19
Months: 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 12
Days: 1, 1, 2, 2, 3, 3, 3, 3, 5, 8, 9, 9, 11, 12, 15, 17, 21, 24, 28, 31
Monthly Lows: 3/23, 2/28, 1/27, 12/3, 11/1, 10/2, 9/3, 8/5, 7/1, 6/3, 5/31, 4/1
Days: 1, 1, 1, 2, 3, 3, 3, 5, 23, 27, 27, 31
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points*.*
We see that SPY tends to have its lows between three major month clusters: 1-4, primarily March (which has actually occurred already this year), 6-9, averaged out to July, and 10-12, averaged out to November. Following the same methodology, we get the third and tenth days of the month as the likeliest days. However, evaluating the monthly lows for the past year, the end of the month has replaced the average of the tenth. Therefore, we have four primary dates for our histogram.
7/3/20, 7/27/20, and 11/3/20, 11/27/20 .
How do we narrow this group down with any accuracy? Let us average the days together to work with two dates - 7/15/20 and 11/15/20.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model – states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is April 14th of 2022. However, we can time-shift to other peaks and troughs to determine a date for this year. If we consider 1/28/2018 as a localized high and apply this model, we get 3/23/20 as a low - strikingly accurate. I have chosen the next localized high, 9/21/2018 to apply the model to. We achieve a date of 11/14/2020.
The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of the bear market - roughly speaking.
Therefore, our timeline looks like:
As we move forward in time, our predictions may be less accurate. It is important to keep in mind that this analysis will likely change and become more accurate as we factor in Terry Laundry’s T-Theory, the Bradley Cycle, a more sophisticated analysis of Bull and Bear Market Cycles, the Fundamental Investor Cyclic Approach, and Seasons and Half-Seasons.
I have also assumed that the audience believes in these models, which is not necessary. Anyone with free time may construct histograms and view these time models, determining for themselves what is accurate and what is not. Take a look at 1/28/2008, that localized high, and 2.15 years (1/4th of the sinusoidal wave of the model) later.
The question now is, what prices will SPY reach on 11/14? Where will we be at 7/28? What will happen on 4/14/22?
submitted by aibnsamin1 to wallstreetbets [link] [comments]

H1 Backtest of ParallaxFX's BBStoch system

Disclaimer: None of this is financial advice. I have no idea what I'm doing. Please do your own research or you will certainly lose money. I'm not a statistician, data scientist, well-seasoned trader, or anything else that would qualify me to make statements such as the below with any weight behind them. Take them for the incoherent ramblings that they are.
TL;DR at the bottom for those not interested in the details.
This is a bit of a novel, sorry about that. It was mostly for getting my own thoughts organized, but if even one person reads the whole thing I will feel incredibly accomplished.

Background

For those of you not familiar, please see the various threads on this trading system here. I can't take credit for this system, all glory goes to ParallaxFX!
I wanted to see how effective this system was at H1 for a couple of reasons: 1) My current broker is TD Ameritrade - their Forex minimum is a mini lot, and I don't feel comfortable enough yet with the risk to trade mini lots on the higher timeframes(i.e. wider pip swings) that ParallaxFX's system uses, so I wanted to see if I could scale it down. 2) I'm fairly impatient, so I don't like to wait days and days with my capital tied up just to see if a trade is going to win or lose.
This does mean it requires more active attention since you are checking for setups once an hour instead of once a day or every 4-6 hours, but the upside is that you trade more often this way so you end up winning or losing faster and moving onto the next trade. Spread does eat more of the trade this way, but I'll cover this in my data below - it ends up not being a problem.
I looked at data from 6/11 to 7/3 on all pairs with a reasonable spread(pairs listed at bottom above the TL;DR). So this represents about 3-4 weeks' worth of trading. I used mark(mid) price charts. Spreadsheet link is below for anyone that's interested.

System Details

I'm pretty much using ParallaxFX's system textbook, but since there are a few options in his writeups, I'll include all the discretionary points here:

And now for the fun. Results!

As you can see, a higher target ended up with higher profit despite a much lower winrate. This is partially just how things work out with profit targets in general, but there's an additional point to consider in our case: the spread. Since we are trading on a lower timeframe, there is less overall price movement and thus the spread takes up a much larger percentage of the trade than it would if you were trading H4, Daily or Weekly charts. You can see exactly how much it accounts for each trade in my spreadsheet if you're interested. TDA does not have the best spreads, so you could probably improve these results with another broker.
EDIT: I grabbed typical spreads from other brokers, and turns out while TDA is pretty competitive on majors, their minors/crosses are awful! IG beats them by 20-40% and Oanda beats them 30-60%! Using IG spreads for calculations increased profits considerably (another 5% on top) and Oanda spreads increased profits massively (another 15%!). Definitely going to be considering another broker than TDA for this strategy. Plus that'll allow me to trade micro-lots, so I can be more granular(and thus accurate) with my position sizing and compounding.

A Note on Spread

As you can see in the data, there were scenarios where the spread was 80% of the overall size of the trade(the size of the confirmation candle that you draw your fibonacci retracements over), which would obviously cut heavily into your profits.
Removing any trades where the spread is more than 50% of the trade width improved profits slightly without removing many trades, but this is almost certainly just coincidence on a small sample size. Going below 40% and even down to 30% starts to cut out a lot of trades for the less-common pairs, but doesn't actually change overall profits at all(~1% either way).
However, digging all the way down to 25% starts to really make some movement. Profit at the -161.8% TP level jumps up to 37.94% if you filter out anything with a spread that is more than 25% of the trade width! And this even keeps the sample size fairly large at 187 total trades.
You can get your profits all the way up to 48.43% at the -161.8% TP level if you filter all the way down to only trades where spread is less than 15% of the trade width, however your sample size gets much smaller at that point(108 trades) so I'm not sure I would trust that as being accurate in the long term.
Overall based on this data, I'm going to only take trades where the spread is less than 25% of the trade width. This may bias my trades more towards the majors, which would mean a lot more correlated trades as well(more on correlation below), but I think it is a reasonable precaution regardless.

Time of Day

Time of day had an interesting effect on trades. In a totally predictable fashion, a vast majority of setups occurred during the London and New York sessions: 5am-12pm Eastern. However, there was one outlier where there were many setups on the 11PM bar - and the winrate was about the same as the big hours in the London session. No idea why this hour in particular - anyone have any insight? That's smack in the middle of the Tokyo/Sydney overlap, not at the open or close of either.
On many of the hour slices I have a feeling I'm just dealing with small number statistics here since I didn't have a lot of data when breaking it down by individual hours. But here it is anyway - for all TP levels, these three things showed up(all in Eastern time):
I don't have any reason to think these timeframes would maintain this behavior over the long term. They're almost certainly meaningless. EDIT: When you de-dup highly correlated trades, the number of trades in these timeframes really drops, so from this data there is no reason to think these timeframes would be any different than any others in terms of winrate.
That being said, these time frames work out for me pretty well because I typically sleep 12am-7am Eastern time. So I automatically avoid the 5am-6am timeframe, and I'm awake for the majority of this system's setups.

Moving stops up to breakeven

This section goes against everything I know and have ever heard about trade management. Please someone find something wrong with my data. I'd love for someone to check my formulas, but I realize that's a pretty insane time commitment to ask of a bunch of strangers.
Anyways. What I found was that for these trades moving stops up...basically at all...actually reduced the overall profitability.
One of the data points I collected while charting was where the price retraced back to after hitting a certain milestone. i.e. once the price hit the -61.8% profit level, how far back did it retrace before hitting the -100% profit level(if at all)? And same goes for the -100% profit level - how far back did it retrace before hitting the -161.8% profit level(if at all)?
Well, some complex excel formulas later and here's what the results appear to be. Emphasis on appears because I honestly don't believe it. I must have done something wrong here, but I've gone over it a hundred times and I can't find anything out of place.
Now, you might think exactly what I did when looking at these numbers: oof, the spread killed us there right? Because even when you move your SL to 0%, you still end up paying the spread, so it's not truly "breakeven". And because we are trading on a lower timeframe, the spread can be pretty hefty right?
Well even when I manually modified the data so that the spread wasn't subtracted(i.e. "Breakeven" was truly +/- 0), things don't look a whole lot better, and still way worse than the passive trade management method of leaving your stops in place and letting it run. And that isn't even a realistic scenario because to adjust out the spread you'd have to move your stoploss inside the candle edge by at least the spread amount, meaning it would almost certainly be triggered more often than in the data I collected(which was purely based on the fib levels and mark price). Regardless, here are the numbers for that scenario:
From a literal standpoint, what I see behind this behavior is that 44 of the 69 breakeven trades(65%!) ended up being profitable to -100% after retracing deeply(but not to the original SL level), which greatly helped offset the purely losing trades better than the partial profit taken at -61.8%. And 36 went all the way back to -161.8% after a deep retracement without hitting the original SL. Anyone have any insight into this? Is this a problem with just not enough data? It seems like enough trades that a pattern should emerge, but again I'm no expert.
I also briefly looked at moving stops to other lower levels (78.6%, 61.8%, 50%, 38.2%, 23.6%), but that didn't improve things any. No hard data to share as I only took a quick look - and I still might have done something wrong overall.
The data is there to infer other strategies if anyone would like to dig in deep(more explanation on the spreadsheet below). I didn't do other combinations because the formulas got pretty complicated and I had already answered all the questions I was looking to answer.

2-Candle vs Confirmation Candle Stops

Another interesting point is that the original system has the SL level(for stop entries) just at the outer edge of the 2-candle pattern that makes up the system. Out of pure laziness, I set up my stops just based on the confirmation candle. And as it turns out, that is much a much better way to go about it.
Of the 60 purely losing trades, only 9 of them(15%) would go on to be winners with stops on the 2-candle formation. Certainly not enough to justify the extra loss and/or reduced profits you are exposing yourself to in every single other trade by setting a wider SL.
Oddly, in every single scenario where the wider stop did save the trade, it ended up going all the way to the -161.8% profit level. Still, not nearly worth it.

Correlated Trades

As I've said many times now, I'm really not qualified to be doing an analysis like this. This section in particular.
Looking at shared currency among the pairs traded, 74 of the trades are correlated. Quite a large group, but it makes sense considering the sort of moves we're looking for with this system.
This means you are opening yourself up to more risk if you were to trade on every signal since you are technically trading with the same underlying sentiment on each different pair. For example, GBP/USD and AUD/USD moving together almost certainly means it's due to USD moving both pairs, rather than GBP and AUD both moving the same size and direction coincidentally at the same time. So if you were to trade both signals, you would very likely win or lose both trades - meaning you are actually risking double what you'd normally risk(unless you halve both positions which can be a good option, and is discussed in ParallaxFX's posts and in various other places that go over pair correlation. I won't go into detail about those strategies here).
Interestingly though, 17 of those apparently correlated trades ended up with different wins/losses.
Also, looking only at trades that were correlated, winrate is 83%/70%/55% (for the three TP levels).
Does this give some indication that the same signal on multiple pairs means the signal is stronger? That there's some strong underlying sentiment driving it? Or is it just a matter of too small a sample size? The winrate isn't really much higher than the overall winrates, so that makes me doubt it is statistically significant.
One more funny tidbit: EUCAD netted the lowest overall winrate: 30% to even the -61.8% TP level on 10 trades. Seems like that is just a coincidence and not enough data, but dang that's a sucky losing streak.
EDIT: WOW I spent some time removing correlated trades manually and it changed the results quite a bit. Some thoughts on this below the results. These numbers also include the other "What I will trade" filters. I added a new worksheet to my data to show what I ended up picking.
To do this, I removed correlated trades - typically by choosing those whose spread had a lower % of the trade width since that's objective and something I can see ahead of time. Obviously I'd like to only keep the winning trades, but I won't know that during the trade. This did reduce the overall sample size down to a level that I wouldn't otherwise consider to be big enough, but since the results are generally consistent with the overall dataset, I'm not going to worry about it too much.
I may also use more discretionary methods(support/resistance, quality of indecision/confirmation candles, news/sentiment for the pairs involved, etc) to filter out correlated trades in the future. But as I've said before I'm going for a pretty mechanical system.
This brought the 3 TP levels and even the breakeven strategies much closer together in overall profit. It muted the profit from the high R:R strategies and boosted the profit from the low R:R strategies. This tells me pair correlation was skewing my data quite a bit, so I'm glad I dug in a little deeper. Fortunately my original conclusion to use the -161.8 TP level with static stops is still the winner by a good bit, so it doesn't end up changing my actions.
There were a few times where MANY (6-8) correlated pairs all came up at the same time, so it'd be a crapshoot to an extent. And the data showed this - often then won/lost together, but sometimes they did not. As an arbitrary rule, the more correlations, the more trades I did end up taking(and thus risking). For example if there were 3-5 correlations, I might take the 2 "best" trades given my criteria above. 5+ setups and I might take the best 3 trades, even if the pairs are somewhat correlated.
I have no true data to back this up, but to illustrate using one example: if AUD/JPY, AUD/USD, CAD/JPY, USD/CAD all set up at the same time (as they did, along with a few other pairs on 6/19/20 9:00 AM), can you really say that those are all the same underlying movement? There are correlations between the different correlations, and trying to filter for that seems rough. Although maybe this is a known thing, I'm still pretty green to Forex - someone please enlighten me if so! I might have to look into this more statistically, but it would be pretty complex to analyze quantitatively, so for now I'm going with my gut and just taking a few of the "best" trades out of the handful.
Overall, I'm really glad I went further on this. The boosting of the B/E strategies makes me trust my calculations on those more since they aren't so far from the passive management like they were with the raw data, and that really had me wondering what I did wrong.

What I will trade

Putting all this together, I am going to attempt to trade the following(demo for a bit to make sure I have the hang of it, then for keeps):
Looking at the data for these rules, test results are:
I'll be sure to let everyone know how it goes!

Other Technical Details

Raw Data

Here's the spreadsheet for anyone that'd like it. (EDIT: Updated some of the setups from the last few days that have fully played out now. I also noticed a few typos, but nothing major that would change the overall outcomes. Regardless, I am currently reviewing every trade to ensure they are accurate.UPDATE: Finally all done. Very few corrections, no change to results.)
I have some explanatory notes below to help everyone else understand the spiraled labyrinth of a mind that put the spreadsheet together.

Insanely detailed spreadsheet notes

For you real nerds out there. Here's an explanation of what each column means:

Pairs

  1. AUD/CAD
  2. AUD/CHF
  3. AUD/JPY
  4. AUD/NZD
  5. AUD/USD
  6. CAD/CHF
  7. CAD/JPY
  8. CHF/JPY
  9. EUAUD
  10. EUCAD
  11. EUCHF
  12. EUGBP
  13. EUJPY
  14. EUNZD
  15. EUUSD
  16. GBP/AUD
  17. GBP/CAD
  18. GBP/CHF
  19. GBP/JPY
  20. GBP/NZD
  21. GBP/USD
  22. NZD/CAD
  23. NZD/CHF
  24. NZD/JPY
  25. NZD/USD
  26. USD/CAD
  27. USD/CHF
  28. USD/JPY

TL;DR

Based on the reasonable rules I discovered in this backtest:

Demo Trading Results

Since this post, I started demo trading this system assuming a 5k capital base and risking ~1% per trade. I've added the details to my spreadsheet for anyone interested. The results are pretty similar to the backtest when you consider real-life conditions/timing are a bit different. I missed some trades due to life(work, out of the house, etc), so that brought my total # of trades and thus overall profit down, but the winrate is nearly identical. I also closed a few trades early due to various reasons(not liking the price action, seeing support/resistance emerge, etc).
A quick note is that TD's paper trade system fills at the mid price for both stop and limit orders, so I had to subtract the spread from the raw trade values to get the true profit/loss amount for each trade.
I'm heading out of town next week, then after that it'll be time to take this sucker live!

Live Trading Results

I started live-trading this system on 8/10, and almost immediately had a string of losses much longer than either my backtest or demo period. Murphy's law huh? Anyways, that has me spooked so I'm doing a longer backtest before I start risking more real money. It's going to take me a little while due to the volume of trades, but I'll likely make a new post once I feel comfortable with that and start live trading again.
submitted by ForexBorex to Forex [link] [comments]

Naked Forex Noob

TL;DR Just got into Naked Forex trading but I am stuck on backtesting. Can't correctly identify critical zones (supp and res zones) and I haven't found the criteria for my trading system (wammies and moolahs) on the charts that I have back tested. Any advice?

Hi there, I started learning about forex awhile back from a friend and he began to show me the basics while also directing me to babypips for the free course they put you through. Although I got into all of this awhile back, I have been stuck in the stages of finding my own strategy and backtesting it.
At first, I was very much into using the basic indicators (RSI, MACD, SMA/EMA) but then I came across a recommendation in this sub to read 'Naked Forex' and I was hooked. Not in a sense that now I knew exactly what my strategy was and how to implement it, but hooked in the idea of being able to read a chart and make trades based on price action and reversals.
Of course while reading the book, understanding the concepts, and looking at all the examples of the different trading strategies i'm getting hyped in my mind to get to the backtesting stage to see if I can put this knowledge to somewhat of a test. Now here I am, staring at tradingview's daily and 4h charts from 2006 onward.
Here's where I get stuck.
I understand identifying critical support and resistance zones and it all made sense to me in the book, but as I am backtesting I find that the zones are either always changing or I can't figure out which ones are critical. On top of that, my trading system looks something like this (advice is welcome on how this could be improved or if you see any glaring "wtfs" in it)
I trade wammies & moolahs (market touches supp. or res. zone twice, second touch is lowehigher with a bearish/bullish candlestick printed on the 2nd touch) and use either a kangaroo tail or big shadow for confirmation to initiate the trade.
The buy/sell stop is set 8 pips above/below the bearish/bullish candlestick and the stop loss is placed below/above the first touch.
The profit target is the following zone.
There's a bit more criteria for the trade but that's the blueprint of it. I apologize if it either doesn't make sense or confuses you but even after sifting through months/years of backtesting data my eyes never caught any of this action happening in the zones I've identified.
Any help would be appreciated as I am a sponge and will soak in as much criticism and advice as I can.
submitted by VileKyleTM to Forex [link] [comments]

No, the British did not steal $45 trillion from India

This is an updated copy of the version on BadHistory. I plan to update it in accordance with the feedback I got.
I'd like to thank two people who will remain anonymous for helping me greatly with this post (you know who you are)
Three years ago a festschrift for Binay Bhushan Chaudhuri was published by Shubhra Chakrabarti, a history teacher at the University of Delhi and Utsa Patnaik, a Marxist economist who taught at JNU until 2010.
One of the essays in the festschirt by Utsa Patnaik was an attempt to quantify the "drain" undergone by India during British Rule. Her conclusion? Britain robbed India of $45 trillion (or £9.2 trillion) during their 200 or so years of rule. This figure was immensely popular, and got republished in several major news outlets (here, here, here, here (they get the number wrong) and more recently here), got a mention from the Minister of External Affairs & returns 29,100 results on Google. There's also plenty of references to it here on Reddit.
Patnaik is not the first to calculate such a figure. Angus Maddison thought it was £100 million, Simon Digby said £1 billion, Javier Estaban said £40 million see Roy (2019). The huge range of figures should set off some alarm bells.
So how did Patnaik calculate this (shockingly large) figure? Well, even though I don't have access to the festschrift, she conveniently has written an article detailing her methodology here. Let's have a look.
How exactly did the British manage to diddle us and drain our wealth’ ? was the question that Basudev Chatterjee (later editor of a volume in the Towards Freedom project) had posed to me 50 years ago when we were fellow-students abroad.
This is begging the question.
After decades of research I find that using India’s commodity export surplus as the measure and applying an interest rate of 5%, the total drain from 1765 to 1938, compounded up to 2016, comes to £9.2 trillion; since $4.86 exchanged for £1 those days, this sum equals about $45 trillion.
This is completely meaningless. To understand why it's meaningless consider India's annual coconut exports. These are almost certainly a surplus but the surplus in trade is countered by the other country buying the product (indeed, by definition, trade surpluses contribute to the GDP of a nation which hardly plays into intuitive conceptualisations of drain).
Furthermore, Dewey (2019) critiques the 5% interest rate.
She [Patnaik] consistently adopts statistical assumptions (such as compound interest at a rate of 5% per annum over centuries) that exaggerate the magnitude of the drain
Moving on:
The exact mechanism of drain, or transfers from India to Britain was quite simple.
Convenient.
Drain theory possessed the political merit of being easily grasped by a nation of peasants. [...] No other idea could arouse people than the thought that they were being taxed so that others in far off lands might live in comfort. [...] It was, therefore, inevitable that the drain theory became the main staple of nationalist political agitation during the Gandhian era.
- Chandra et al. (1989)
The key factor was Britain’s control over our taxation revenues combined with control over India’s financial gold and forex earnings from its booming commodity export surplus with the world. Simply put, Britain used locally raised rupee tax revenues to pay for its net import of goods, a highly abnormal use of budgetary funds not seen in any sovereign country.
The issue with figures like these is they all make certain methodological assumptions that are impossible to prove. From Roy in Frankema et al. (2019):
the "drain theory" of Indian poverty cannot be tested with evidence, for several reasons. First, it rests on the counterfactual that any money saved on account of factor payments abroad would translate into domestic investment, which can never be proved. Second, it rests on "the primitive notion that all payments to foreigners are "drain"", that is, on the assumption that these payments did not contribute to domestic national income to the equivalent extent (Kumar 1985, 384; see also Chaudhuri 1968). Again, this cannot be tested. [...] Fourth, while British officers serving India did receive salaries that were many times that of the average income in India, a paper using cross-country data shows that colonies with better paid officers were governed better (Jones 2013).
Indeed, drain theory rests on some very weak foundations. This, in of itself, should be enough to dismiss any of the other figures that get thrown out. Nonetheless, I felt it would be a useful exercise to continue exploring Patnaik's take on drain theory.
The East India Company from 1765 onwards allocated every year up to one-third of Indian budgetary revenues net of collection costs, to buy a large volume of goods for direct import into Britain, far in excess of that country’s own needs.
So what's going on here? Well Roy (2019) explains it better:
Colonial India ran an export surplus, which, together with foreign investment, was used to pay for services purchased from Britain. These payments included interest on public debt, salaries, and pensions paid to government offcers who had come from Britain, salaries of managers and engineers, guaranteed profts paid to railway companies, and repatriated business profts. How do we know that any of these payments involved paying too much? The answer is we do not.
So what was really happening is the government was paying its workers for services (as well as guaranteeing profits - to promote investment - something the GoI does today Dalal (2019), and promoting business in India), and those workers were remitting some of that money to Britain. This is hardly a drain (unless, of course, Indian diaspora around the world today are "draining" it). In some cases, the remittances would take the form of goods (as described) see Chaudhuri (1983):
It is obvious that these debit items were financed through the export surplus on merchandise account, and later, when railway construction started on a large scale in India, through capital import. Until 1833 the East India Company followed a cumbersome method in remitting the annual home charges. This was to purchase export commodities in India out of revenue, which were then shipped to London and the proceeds from their sale handed over to the home treasury.
While Roy's earlier point argues better paid officers governed better, it is honestly impossible to say what part of the repatriated export surplus was a drain, and what was not. However calling all of it a drain is definitely misguided.
It's worth noting that Patnaik seems to make no attempt to quantify the benefits of the Raj either, Dewey (2019)'s 2nd criticism:
she [Patnaik] consistently ignores research that would tend to cut the economic impact of the drain down to size, such as the work on the sources of investment during the industrial revolution (which shows that industrialisation was financed by the ploughed-back profits of industrialists) or the costs of empire school (which stresses the high price of imperial defence)

Since tropical goods were highly prized in other cold temperate countries which could never produce them, in effect these free goods represented international purchasing power for Britain which kept a part for its own use and re-exported the balance to other countries in Europe and North America against import of food grains, iron and other goods in which it was deficient.
Re-exports necessarily adds value to goods when the goods are processed and when the goods are transported. The country with the largest navy at the time would presumably be in very good stead to do the latter.
The British historians Phyllis Deane and WA Cole presented an incorrect estimate of Britain’s 18th-19th century trade volume, by leaving out re-exports completely. I found that by 1800 Britain’s total trade was 62% higher than their estimate, on applying the correct definition of trade including re-exports, that is used by the United Nations and by all other international organisations.
While interesting, and certainly expected for such an old book, re-exporting necessarily adds value to goods.
When the Crown took over from the Company, from 1861 a clever system was developed under which all of India’s financial gold and forex earnings from its fast-rising commodity export surplus with the world, was intercepted and appropriated by Britain. As before up to a third of India’s rising budgetary revenues was not spent domestically but was set aside as ‘expenditure abroad’.
So, what does this mean? Britain appropriated all of India's earnings, and then spent a third of it aboard? Not exactly. She is describing home charges see Roy (2019) again:
Some of the expenditures on defense and administration were made in sterling and went out of the country. This payment by the government was known as the Home Charges. For example, interest payment on loans raised to finance construction of railways and irrigation works, pensions paid to retired officers, and purchase of stores, were payments in sterling. [...] almost all money that the government paid abroad corresponded to the purchase of a service from abroad. [...] The balance of payments system that emerged after 1800 was based on standard business principles. India bought something and paid for it. State revenues were used to pay for wages of people hired abroad, pay for interest on loans raised abroad, and repatriation of profits on foreign investments coming into India. These were legitimate market transactions.
Indeed, if paying for what you buy is drain, then several billions of us are drained every day.
The Secretary of State for India in Council, based in London, invited foreign importers to deposit with him the payment (in gold, sterling and their own currencies) for their net imports from India, and these gold and forex payments disappeared into the yawning maw of the SoS’s account in the Bank of England.
It should be noted that India having two heads was beneficial, and encouraged investment per Roy (2019):
The fact that the India Office in London managed a part of the monetary system made India creditworthy, stabilized its currency, and encouraged foreign savers to put money into railways and private enterprise in India. Current research on the history of public debt shows that stable and large colonies found it easier to borrow abroad than independent economies because the investors trusted the guarantee of the colonist powers.

Against India’s net foreign earnings he issued bills, termed Council bills (CBs), to an equivalent rupee value. The rate (between gold-linked sterling and silver rupee) at which the bills were issued, was carefully adjusted to the last farthing, so that foreigners would never find it more profitable to ship financial gold as payment directly to Indians, compared to using the CB route. Foreign importers then sent the CBs by post or by telegraph to the export houses in India, that via the exchange banks were paid out of the budgeted provision of sums under ‘expenditure abroad’, and the exporters in turn paid the producers (peasants and artisans) from whom they sourced the goods.
Sunderland (2013) argues CBs had two main roles (and neither were part of a grand plot to keep gold out of India):
Council bills had two roles. They firstly promoted trade by handing the IO some control of the rate of exchange and allowing the exchange banks to remit funds to India and to hedge currency transaction risks. They also enabled the Indian government to transfer cash to England for the payment of its UK commitments.

The United Nations (1962) historical data for 1900 to 1960, show that for three decades up to 1928 (and very likely earlier too) India posted the second highest merchandise export surplus in the world, with USA in the first position. Not only were Indians deprived of every bit of the enormous international purchasing power they had earned over 175 years, even its rupee equivalent was not issued to them since not even the colonial government was credited with any part of India’s net gold and forex earnings against which it could issue rupees. The sleight-of-hand employed, namely ‘paying’ producers out of their own taxes, made India’s export surplus unrequited and constituted a tax-financed drain to the metropolis, as had been correctly pointed out by those highly insightful classical writers, Dadabhai Naoroji and RCDutt.
It doesn't appear that others appreciate their insight Roy (2019):
K. N. Chaudhuri rightly calls such practice ‘confused’ economics ‘coloured by political feelings’.

Surplus budgets to effect such heavy tax-financed transfers had a severe employment–reducing and income-deflating effect: mass consumption was squeezed in order to release export goods. Per capita annual foodgrains absorption in British India declined from 210 kg. during the period 1904-09, to 157 kg. during 1937-41, and to only 137 kg by 1946.
Dewey (1978) points out reliability issues with Indian agriculutural statistics, however this calorie decline persists to this day. Some of it is attributed to less food being consumed at home Smith (2015), a lower infectious disease burden Duh & Spears (2016) and diversified diets Vankatesh et al. (2016).
If even a part of its enormous foreign earnings had been credited to it and not entirely siphoned off, India could have imported modern technology to build up an industrial structure as Japan was doing.
This is, unfortunately, impossible to prove. Had the British not arrived in India, there is no clear indication that India would've united (this is arguably more plausible than the given counterfactual1). Had the British not arrived in India, there is no clear indication India would not have been nuked in WW2, much like Japan. Had the British not arrived in India, there is no clear indication India would not have been invaded by lizard people, much like Japan. The list continues eternally.
Nevertheless, I will charitably examine the given counterfactual anyway. Did pre-colonial India have industrial potential? The answer is a resounding no.
From Gupta (1980):
This article starts from the premise that while economic categories - the extent of commodity production, wage labour, monetarisation of the economy, etc - should be the basis for any analysis of the production relations of pre-British India, it is the nature of class struggles arising out of particular class alignments that finally gives the decisive twist to social change. Arguing on this premise, and analysing the available evidence, this article concludes that there was little potential for industrial revolution before the British arrived in India because, whatever might have been the character of economic categories of that period, the class relations had not sufficiently matured to develop productive forces and the required class struggle for a 'revolution' to take place.
A view echoed in Raychaudhuri (1983):
Yet all of this did not amount to an economic situation comparable to that of western Europe on the eve of the industrial revolution. Her technology - in agriculture as well as manufacturers - had by and large been stagnant for centuries. [...] The weakness of the Indian economy in the mid-eighteenth century, as compared to pre-industrial Europe was not simply a matter of technology and commercial and industrial organization. No scientific or geographical revolution formed part of the eighteenth-century Indian's historical experience. [...] Spontaneous movement towards industrialisation is unlikely in such a situation.
So now we've established India did not have industrial potential, was India similar to Japan just before the Meiji era? The answer, yet again, unsurprisingly, is no. Japan's economic situation was not comparable to India's, which allowed for Japan to finance its revolution. From Yasuba (1986):
All in all, the Japanese standard of living may not have been much below the English standard of living before industrialization, and both of them may have been considerably higher than the Indian standard of living. We can no longer say that Japan started from a pathetically low economic level and achieved a rapid or even "miraculous" economic growth. Japan's per capita income was almost as high as in Western Europe before industrialization, and it was possible for Japan to produce surplus in the Meiji Period to finance private and public capital formation.
The circumstances that led to Meiji Japan were extremely unique. See Tomlinson (1985):
Most modern comparisons between India and Japan, written by either Indianists or Japanese specialists, stress instead that industrial growth in Meiji Japan was the product of unique features that were not reproducible elsewhere. [...] it is undoubtably true that Japan's progress to industrialization has been unique and unrepeatable
So there you have it. Unsubstantiated statistical assumptions, calling any number you can a drain & assuming a counterfactual for no good reason gets you this $45 trillion number. Hopefully that's enough to bury it in the ground.
1. Several authors have affirmed that Indian identity is a colonial artefact. For example see Rajan 1969:
Perhaps the single greatest and most enduring impact of British rule over India is that it created an Indian nation, in the modern political sense. After centuries of rule by different dynasties overparts of the Indian sub-continent, and after about 100 years of British rule, Indians ceased to be merely Bengalis, Maharashtrians,or Tamils, linguistically and culturally.
or see Bryant 2000:
But then, it would be anachronistic to condemn eighteenth-century Indians, who served the British, as collaborators, when the notion of 'democratic' nationalism or of an Indian 'nation' did not then exist. [...] Indians who fought for them, differed from the Europeans in having a primary attachment to a non-belligerent religion, family and local chief, which was stronger than any identity they might have with a more remote prince or 'nation'.

Bibliography

Chakrabarti, Shubra & Patnaik, Utsa (2018). Agrarian and other histories: Essays for Binay Bhushan Chaudhuri. Colombia University Press
Hickel, Jason (2018). How the British stole $45 trillion from India. The Guardian
Bhuyan, Aroonim & Sharma, Krishan (2019). The Great Loot: How the British stole $45 trillion from India. Indiapost
Monbiot, George (2020). English Landowners have stolen our rights. It is time to reclaim them. The Guardian
Tsjeng, Zing (2020). How Britain Stole $45 trillion from India with trains | Empires of Dirt. Vice
Chaudhury, Dipanjan (2019). British looted $45 trillion from India in today’s value: Jaishankar. The Economic Times
Roy, Tirthankar (2019). How British rule changed India's economy: The Paradox of the Raj. Palgrave Macmillan
Patnaik, Utsa (2018). How the British impoverished India. Hindustan Times
Tuovila, Alicia (2019). Expenditure method. Investopedia
Dewey, Clive (2019). Changing the guard: The dissolution of the nationalist–Marxist orthodoxy in the agrarian and agricultural history of India. The Indian Economic & Social History Review
Chandra, Bipan et al. (1989). India's Struggle for Independence, 1857-1947. Penguin Books
Frankema, Ewout & Booth, Anne (2019). Fiscal Capacity and the Colonial State in Asia and Africa, c. 1850-1960. Cambridge University Press
Dalal, Sucheta (2019). IL&FS Controversy: Centre is Paying Up on Sovereign Guarantees to ADB, KfW for Group's Loan. TheWire
Chaudhuri, K.N. (1983). X - Foreign Trade and Balance of Payments (1757–1947). Cambridge University Press
Sunderland, David (2013). Financing the Raj: The City of London and Colonial India, 1858-1940. Boydell Press
Dewey, Clive (1978). Patwari and Chaukidar: Subordinate officials and the reliability of India’s agricultural statistics. Athlone Press
Smith, Lisa (2015). The great Indian calorie debate: Explaining rising undernourishment during India’s rapid economic growth. Food Policy
Duh, Josephine & Spears, Dean (2016). Health and Hunger: Disease, Energy Needs, and the Indian Calorie Consumption Puzzle. The Economic Journal
Vankatesh, P. et al. (2016). Relationship between Food Production and Consumption Diversity in India – Empirical Evidences from Cross Section Analysis. Agricultural Economics Research Review
Gupta, Shaibal (1980). Potential of Industrial Revolution in Pre-British India. Economic and Political Weekly
Raychaudhuri, Tapan (1983). I - The mid-eighteenth-century background. Cambridge University Press
Yasuba, Yasukichi (1986). Standard of Living in Japan Before Industrialization: From what Level did Japan Begin? A Comment. The Journal of Economic History
Tomblinson, B.R. (1985). Writing History Sideways: Lessons for Indian Economic Historians from Meiji Japan. Cambridge University Press
Rajan, M.S. (1969). The Impact of British Rule in India. Journal of Contemporary History
Bryant, G.J. (2000). Indigenous Mercenaries in the Service of European Imperialists: The Case of the Sepoys in the Early British Indian Army, 1750-1800. War in History
submitted by GaslightEveryone to u/GaslightEveryone [link] [comments]

Where is Bitcoin Going and When?

Where is Bitcoin Going and When?

The Federal Reserve and the United States government are pumping extreme amounts of money into the economy, already totaling over $484 billion. They are doing so because it already had a goal to inflate the United States Dollar (USD) so that the market can continue to all-time highs. It has always had this goal. They do not care how much inflation goes up by now as we are going into a depression with the potential to totally crash the US economy forever. They believe the only way to save the market from going to zero or negative values is to inflate it so much that it cannot possibly crash that low. Even if the market does not dip that low, inflation serves the interest of powerful people.
The impending crash of the stock market has ramifications for Bitcoin, as, though there is no direct ongoing-correlation between the two, major movements in traditional markets will necessarily affect Bitcoin. According to the Blockchain Center’s Cryptocurrency Correlation Tool, Bitcoin is not correlated with the stock market. However, when major market movements occur, they send ripples throughout the financial ecosystem which necessary affect even ordinarily uncorrelated assets.
Therefore, Bitcoin will reach X price on X date after crashing to a price of X by X date.

Stock Market Crash

The Federal Reserve has caused some serious consternation with their release of ridiculous amounts of money in an attempt to buoy the economy. At face value, it does not seem to have any rationale or logic behind it other than keeping the economy afloat long enough for individuals to profit financially and politically. However, there is an underlying basis to what is going on which is important to understand in order to profit financially.
All markets are functionally price probing systems. They constantly undergo a price-discovery process. In a fiat system, money is an illusory and a fundamentally synthetic instrument with no intrinsic value – similar to Bitcoin. The primary difference between Bitcoin is the underlying technology which provides a slew of benefits that fiat does not. Fiat, however, has an advantage in being able to have the support of powerful nation-states which can use their might to insure the currency’s prosperity.
Traditional stock markets are composed of indices (pl. of index). Indices are non-trading market instruments which are essentially summaries of business values which comprise them. They are continuously recalculated throughout a trading day, and sometimes reflected through tradable instruments such as Exchange Traded Funds or Futures. Indices are weighted by market capitalizations of various businesses.
Price theory essentially states that when a market fails to take out a new low in a given range, it will have an objective to take out the high. When a market fails to take out a new high, it has an objective to make a new low. This is why price-time charts go up and down, as it does this on a second-by-second, minute-by-minute, day-by-day, and even century-by-century basis. Therefore, market indices will always return to some type of bull market as, once a true low is formed, the market will have a price objective to take out a new high outside of its’ given range – which is an all-time high. Instruments can only functionally fall to zero, whereas they can grow infinitely.
So, why inflate the economy so much?
Deflation is disastrous for central banks and markets as it raises the possibility of producing an overall price objective of zero or negative values. Therefore, under a fractional reserve system with a fiat currency managed by a central bank – the goal of the central bank is to depreciate the currency. The dollar is manipulated constantly with the intention of depreciating its’ value.
Central banks have a goal of continued inflated fiat values. They tend to ordinarily contain it at less than ten percent (10%) per annum in order for the psyche of the general populace to slowly adjust price increases. As such, the markets are divorced from any other logic. Economic policy is the maintenance of human egos, not catering to fundamental analysis. Gross Domestic Product (GDP) growth is well-known not to be a measure of actual growth or output. It is a measure of increase in dollars processed. Banks seek to produce raising numbers which make society feel like it is growing economically, making people optimistic. To do so, the currency is inflated, though inflation itself does not actually increase growth. When society is optimistic, it spends and engages in business – resulting in actual growth. It also encourages people to take on credit and debts, creating more fictional fiat.
Inflation is necessary for markets to continue to reach new heights, generating positive emotional responses from the populace, encouraging spending, encouraging debt intake, further inflating the currency, and increasing the sale of government bonds. The fiat system only survives by generating more imaginary money on a regular basis.
Bitcoin investors may profit from this by realizing that stock investors as a whole always stand to profit from the market so long as it is managed by a central bank and does not collapse entirely. If those elements are filled, it has an unending price objective to raise to new heights. It also allows us to realize that this response indicates that the higher-ups believe that the economy could crash in entirety, and it may be wise for investors to have multiple well-thought-out exit strategies.

Economic Analysis of Bitcoin

The reason why the Fed is so aggressively inflating the economy is due to fears that it will collapse forever or never rebound. As such, coupled with a global depression, a huge demand will appear for a reserve currency which is fundamentally different than the previous system. Bitcoin, though a currency or asset, is also a market. It also undergoes a constant price-probing process. Unlike traditional markets, Bitcoin has the exact opposite goal. Bitcoin seeks to appreciate in value and not depreciate. This has a quite different affect in that Bitcoin could potentially become worthless and have a price objective of zero.
Bitcoin was created in 2008 by a now famous mysterious figure known as Satoshi Nakamoto and its’ open source code was released in 2009. It was the first decentralized cryptocurrency to utilize a novel protocol known as the blockchain. Up to one megabyte of data may be sent with each transaction. It is decentralized, anonymous, transparent, easy to set-up, and provides myriad other benefits. Bitcoin is not backed up by anything other than its’ own technology.
Bitcoin is can never be expected to collapse as a framework, even were it to become worthless. The stock market has the potential to collapse in entirety, whereas, as long as the internet exists, Bitcoin will be a functional system with a self-authenticating framework. That capacity to persist regardless of the actual price of Bitcoin and the deflationary nature of Bitcoin means that it has something which fiat does not – inherent value.
Bitcoin is based on a distributed database known as the “blockchain.” Blockchains are essentially decentralized virtual ledger books, replete with pages known as “blocks.” Each page in a ledger is composed of paragraph entries, which are the actual transactions in the block.
Blockchains store information in the form of numerical transactions, which are just numbers. We can consider these numbers digital assets, such as Bitcoin. The data in a blockchain is immutable and recorded only by consensus-based algorithms. Bitcoin is cryptographic and all transactions are direct, without intermediary, peer-to-peer.
Bitcoin does not require trust in a central bank. It requires trust on the technology behind it, which is open-source and may be evaluated by anyone at any time. Furthermore, it is impossible to manipulate as doing so would require all of the nodes in the network to be hacked at once – unlike the stock market which is manipulated by the government and “Market Makers”. Bitcoin is also private in that, though the ledge is openly distributed, it is encrypted. Bitcoin’s blockchain has one of the greatest redundancy and information disaster recovery systems ever developed.
Bitcoin has a distributed governance model in that it is controlled by its’ users. There is no need to trust a payment processor or bank, or even to pay fees to such entities. There are also no third-party fees for transaction processing. As the ledge is immutable and transparent it is never possible to change it – the data on the blockchain is permanent. The system is not easily susceptible to attacks as it is widely distributed. Furthermore, as users of Bitcoin have their private keys assigned to their transactions, they are virtually impossible to fake. No lengthy verification, reconciliation, nor clearing process exists with Bitcoin.
Bitcoin is based on a proof-of-work algorithm. Every transaction on the network has an associated mathetical “puzzle”. Computers known as miners compete to solve the complex cryptographic hash algorithm that comprises that puzzle. The solution is proof that the miner engaged in sufficient work. The puzzle is known as a nonce, a number used only once. There is only one major nonce at a time and it issues 12.5 Bitcoin. Once it is solved, the fact that the nonce has been solved is made public.
A block is mined on average of once every ten minutes. However, the blockchain checks every 2,016,000 minutes (approximately four years) if 201,600 blocks were mined. If it was faster, it increases difficulty by half, thereby deflating Bitcoin. If it was slower, it decreases, thereby inflating Bitcoin. It will continue to do this until zero Bitcoin are issued, projected at the year 2140. On the twelfth of May, 2020, the blockchain will halve the amount of Bitcoin issued when each nonce is guessed. When Bitcoin was first created, fifty were issued per block as a reward to miners. 6.25 BTC will be issued from that point on once each nonce is solved.
Unlike fiat, Bitcoin is a deflationary currency. As BTC becomes scarcer, demand for it will increase, also raising the price. In this, BTC is similar to gold. It is predictable in its’ output, unlike the USD, as it is based on a programmed supply. We can predict BTC’s deflation and inflation almost exactly, if not exactly. Only 21 million BTC will ever be produced, unless the entire network concedes to change the protocol – which is highly unlikely.
Some of the drawbacks to BTC include congestion. At peak congestion, it may take an entire day to process a Bitcoin transaction as only three to five transactions may be processed per second. Receiving priority on a payment may cost up to the equivalent of twenty dollars ($20). Bitcoin mining consumes enough energy in one day to power a single-family home for an entire week.

Trading or Investing?

The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this article, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. In order to determine when the stock market will crash, causing a major decline in BTC price, we will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We are concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets and currencies ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets and instruments rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market or instrument is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The Bitcoin market is open twenty-four-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy. Bitcoin is an asset which an individual can both trade and invest, however this article will be focused on trading due to the wide volatility in BTC prices over the short-term.

Technical Indicator Analysis of Bitcoin

Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. They are also often discounted when it comes to BTC. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
  • Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume for stocks is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. This does not occur with BTC, as it is open twenty-four-seven. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes (peaks and troughs) because of levels of fear. Volume allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation. Volume is steadily decreasing. Lows and highs are reached when volume is lower.
Therefore, due to the relatively high volume on the 12th of March, we can safely determine that a low for BTC was not reached.
  • VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. VIX is essentially useless for BTC as BTC-based options do not exist. It allows us to predict the market low for $SPY, which will have an indirect impact on BTC in the short term, likely leading to the yearly low. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend for the S&P 500 is imminent.
  • RSI (Relative Strength Index): The most important technical indicator, useful for determining highs and lows when time symmetry is not availing itself. Sometimes analysis of RSI can conflict in different time frames, easiest way to use it is when it is at extremes – either under 30 or over 70. Extremes can be used for filtering highs or lows based on time-and-price window calculations. Highly instructive as to major corrective clues and indicative of continued directional movement. Must determine if longer-term RSI values find support at same values as before. It is currently at 73.56.
  • Secondly, RSI may be used as a high or low filter, to observe the level that short-term RSI reaches in counter-trend corrections. Repetitions based on market movements based on RSI determine how long a trade should be held onto. Once a short term RSI reaches an extreme and stay there, the other RSI’s should gradually reach the same extremes. Once all RSI’s are at extreme highs, a trend confirmation should occur and RSI’s should drop to their midpoint.

Trend Definition Analysis of Bitcoin

Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw a downtrend line on the BTC chart, but it is possible to correctly draw an uptrend – indicating that the overall trend is downwards. The only mitigating factor is the impending stock market crash.

Time Symmetry Analysis of Bitcoin

Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will measure it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
  • Yearly Lows (last seven years): 1/1/13, 4/10/14, 1/15/15, 1/17/16, 1/1/17, 12/15/18, 2/6/19
  • Monthly Mode: 1, 1, 1, 1, 2, 4, 12
  • Daily Mode: 1, 1, 6, 10, 15, 15, 17
  • Monthly Lows (for the last year): 3/12/20 (10:00pm), 2/28/20 (7:09am), 1/2/20 (8:09pm), 12/18/19 (8:00am), 11/25/19 (1:00am), 10/24/19 (2:59am), 9/30/19 (2:59am), 8/29,19 (4:00am), 7/17/19 (7:59am), 6/4/19 (5:59pm), 5/1/19 (12:00am), 4/1/19 (12:00am)
  • Daily Lows Mode for those Months: 1, 1, 2, 4, 12, 17, 18, 24, 25, 28, 29, 30
  • Hourly Lows Mode for those Months (Military time): 0100, 0200, 0200, 0400, 0700, 0700, 0800, 1200, 1200, 1700, 2000, 2200
  • Minute Lows Mode for those Months: 00, 00, 00, 00, 00, 00, 09, 09, 59, 59, 59, 59
  • Day of the Week Lows (last twenty-six weeks):
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points
Evaluating the yearly lows, we see that BTC tends to have its lows primarily at the beginning of every year, with a possibility of it being at the end of the year. Following the same methodology, we get the middle of the month as the likeliest day. However, evaluating the monthly lows for the past year, the beginning and end of the month are more likely for lows.
Therefore, we have two primary dates from our histogram.
1/1/21, 1/15/21, and 1/29/21
2:00am, 8:00am, 12:00pm, or 10:00pm
In fact, the high for this year was February the 14th, only thirty days off from our histogram calculations.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is February 9, 2020 – a reasonably accurate depiction of the low for this year (which was on 3/12/20). (Taking only the Armstrong model into account, the next high should be Saturday, April 23, 2022). Therefore, the Armstrong model indicates that we have actually bottomed out for the year!
Bear markets cannot exist in perpetuity whereas bull markets can. Bear markets will eventually have price objectives of zero, whereas bull markets can increase to infinity. It can occur for individual market instruments, but not markets as a whole. Since bull markets are defined by low volatility, they also last longer. Once a bull market is indicated, the trader can remain in a long position until a new high is reached, then switch to shorts. The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of this bear market – roughly speaking. They cannot be shorter than fifteen months for a central-bank controlled market, which does not apply to Bitcoin. (Otherwise, it would continue until Sunday, September 12, 2021.) However, we should expect Bitcoin to experience its’ exponential growth after the stock market re-enters a bull market.
Terry Laundy’s T-Theory implemented by measuring the time of an indicator from peak to trough, then using that to define a future time window. It is similar to an head-and-shoulders pattern in that it is the process of forming the right side from a synthetic technical indicator. If the indicator is making continued lows, then time is recalculated for defining the right side of the T. The date of the market inflection point may be a price or indicator inflection date, so it is not always exactly useful. It is better to make us aware of possible market inflection points, clustered with other data. It gives us an RSI low of May, 9th 2020.
The Bradley Cycle is coupled with volatility allows start dates for campaigns or put options as insurance in portfolios for stocks. However, it is also useful for predicting market moves instead of terminal dates for discretes. Using dates which correspond to discretes, we can see how those dates correspond with changes in VIX.
Therefore, our timeline looks like:
  • 2/14/20 – yearly high ($10372 USD)
  • 3/12/20 – yearly low thus far ($3858 USD)
  • 5/9/20 – T-Theory true yearly low (BTC between 4863 and 3569)
  • 5/26/20 – hashrate difficulty halvening
  • 11/14/20 – stock market low
  • 1/15/21 – yearly low for BTC, around $8528
  • 8/19/21 – end of stock bear market
  • 11/26/21 – eighteen months from halvening, average peak from halvenings (BTC begins rising from $3000 area to above $23,312)
  • 4/23/22 – all-time high
Taken from my blog: http://aliamin.info/2020/
submitted by aibnsamin1 to Bitcoin [link] [comments]

The Next Crypto Wave: The Rise of Stablecoins and its Entry to the U.S. Dollar Market

The Next Crypto Wave: The Rise of Stablecoins and its Entry to the U.S. Dollar Market

Author: Christian Hsieh, CEO of Tokenomy
This paper examines some explanations for the continual global market demand for the U.S. dollar, the rise of stablecoins, and the utility and opportunities that crypto dollars can offer to both the cryptocurrency and traditional markets.
The U.S. dollar, dominant in world trade since the establishment of the 1944 Bretton Woods System, is unequivocally the world’s most demanded reserve currency. Today, more than 61% of foreign bank reserves and nearly 40% of the entire world’s debt is denominated in U.S. dollars1.
However, there is a massive supply and demand imbalance in the U.S. dollar market. On the supply side, central banks throughout the world have implemented more than a decade-long accommodative monetary policy since the 2008 global financial crisis. The COVID-19 pandemic further exacerbated the need for central banks to provide necessary liquidity and keep staggering economies moving. While the Federal Reserve leads the effort of “money printing” and stimulus programs, the current money supply still cannot meet the constant high demand for the U.S. dollar2. Let us review some of the reasons for this constant dollar demand from a few economic fundamentals.

Demand for U.S. Dollars

Firstly, most of the world’s trade is denominated in U.S. dollars. Chief Economist of the IMF, Gita Gopinath, has compiled data reflecting that the U.S. dollar’s share of invoicing was 4.7 times larger than America’s share of the value of imports, and 3.1 times its share of world exports3. The U.S. dollar is the dominant “invoicing currency” in most developing countries4.

https://preview.redd.it/d4xalwdyz8p51.png?width=535&format=png&auto=webp&s=9f0556c6aa6b29016c9b135f3279e8337dfee2a6

https://preview.redd.it/wucg40kzz8p51.png?width=653&format=png&auto=webp&s=71257fec29b43e0fc0df1bf04363717e3b52478f
This U.S. dollar preference also directly impacts the world’s debt. According to the Bank of International Settlements, there is over $67 trillion in U.S. dollar denominated debt globally, and borrowing outside of the U.S. accounted for $12.5 trillion in Q1 20205. There is an immense demand for U.S. dollars every year just to service these dollar debts. The annual U.S. dollar buying demand is easily over $1 trillion assuming the borrowing cost is at 1.5% (1 year LIBOR + 1%) per year, a conservative estimate.

https://preview.redd.it/6956j6f109p51.png?width=487&format=png&auto=webp&s=ccea257a4e9524c11df25737cac961308b542b69
Secondly, since the U.S. has a much stronger economy compared to its global peers, a higher return on investments draws U.S. dollar demand from everywhere in the world, to invest in companies both in the public and private markets. The U.S. hosts the largest stock markets in the world with more than $33 trillion in public market capitalization (combined both NYSE and NASDAQ)6. For the private market, North America’s total share is well over 60% of the $6.5 trillion global assets under management across private equity, real assets, and private debt investments7. The demand for higher quality investments extends to the fixed income market as well. As countries like Japan and Switzerland currently have negative-yielding interest rates8, fixed income investors’ quest for yield in the developed economies leads them back to the U.S. debt market. As of July 2020, there are $15 trillion worth of negative-yielding debt securities globally (see chart). In comparison, the positive, low-yielding U.S. debt remains a sound fixed income strategy for conservative investors in uncertain market conditions.

Source: Bloomberg
Last, but not least, there are many developing economies experiencing failing monetary policies, where hyperinflation has become a real national disaster. A classic example is Venezuela, where the currency Bolivar became practically worthless as the inflation rate skyrocketed to 10,000,000% in 20199. The recent Beirut port explosion in Lebanon caused a sudden economic meltdown and compounded its already troubled financial market, where inflation has soared to over 112% year on year10. For citizens living in unstable regions such as these, the only reliable store of value is the U.S. dollar. According to the Chainalysis 2020 Geography of Cryptocurrency Report, Venezuela has become one of the most active cryptocurrency trading countries11. The demand for cryptocurrency surges as a flight to safety mentality drives Venezuelans to acquire U.S. dollars to preserve savings that they might otherwise lose. The growth for cryptocurrency activities in those regions is fueled by these desperate citizens using cryptocurrencies as rails to access the U.S. dollar, on top of acquiring actual Bitcoin or other underlying crypto assets.

The Rise of Crypto Dollars

Due to the highly volatile nature of cryptocurrencies, USD stablecoin, a crypto-powered blockchain token that pegs its value to the U.S. dollar, was introduced to provide stable dollar exposure in the crypto trading sphere. Tether is the first of its kind. Issued in 2014 on the bitcoin blockchain (Omni layer protocol), under the token symbol USDT, it attempts to provide crypto traders with a stable settlement currency while they trade in and out of various crypto assets. The reason behind the stablecoin creation was to address the inefficient and burdensome aspects of having to move fiat U.S. dollars between the legacy banking system and crypto exchanges. Because one USDT is theoretically backed by one U.S. dollar, traders can use USDT to trade and settle to fiat dollars. It was not until 2017 that the majority of traders seemed to realize Tether’s intended utility and started using it widely. As of April 2019, USDT trading volume started exceeding the trading volume of bitcoina12, and it now dominates the crypto trading sphere with over $50 billion average daily trading volume13.

https://preview.redd.it/3vq7v1jg09p51.png?width=700&format=png&auto=webp&s=46f11b5f5245a8c335ccc60432873e9bad2eb1e1
An interesting aspect of USDT is that although the claimed 1:1 backing with U.S. dollar collateral is in question, and the Tether company is in reality running fractional reserves through a loose offshore corporate structure, Tether’s trading volume and adoption continues to grow rapidly14. Perhaps in comparison to fiat U.S. dollars, which is not really backed by anything, Tether still has cash equivalents in reserves and crypto traders favor its liquidity and convenience over its lack of legitimacy. For those who are concerned about Tether’s solvency, they can now purchase credit default swaps for downside protection15. On the other hand, USDC, the more compliant contender, takes a distant second spot with total coin circulation of $1.8 billion, versus USDT at $14.5 billion (at the time of publication). It is still too early to tell who is the ultimate leader in the stablecoin arena, as more and more stablecoins are launching to offer various functions and supporting mechanisms. There are three main categories of stablecoin: fiat-backed, crypto-collateralized, and non-collateralized algorithm based stablecoins. Most of these are still at an experimental phase, and readers can learn more about them here. With the continuous innovation of stablecoin development, the utility stablecoins provide in the overall crypto market will become more apparent.

Institutional Developments

In addition to trade settlement, stablecoins can be applied in many other areas. Cross-border payments and remittances is an inefficient market that desperately needs innovation. In 2020, the average cost of sending money across the world is around 7%16, and it takes days to settle. The World Bank aims to reduce remittance fees to 3% by 2030. With the implementation of blockchain technology, this cost could be further reduced close to zero.
J.P. Morgan, the largest bank in the U.S., has created an Interbank Information Network (IIN) with 416 global Institutions to transform the speed of payment flows through its own JPM Coin, another type of crypto dollar17. Although people argue that JPM Coin is not considered a cryptocurrency as it cannot trade openly on a public blockchain, it is by far the largest scale experiment with all the institutional participants trading within the “permissioned” blockchain. It might be more accurate to refer to it as the use of distributed ledger technology (DLT) instead of “blockchain” in this context. Nevertheless, we should keep in mind that as J.P. Morgan currently moves $6 trillion U.S. dollars per day18, the scale of this experiment would create a considerable impact in the international payment and remittance market if it were successful. Potentially the day will come when regulated crypto exchanges become participants of IIN, and the link between public and private crypto assets can be instantly connected, unlocking greater possibilities in blockchain applications.
Many central banks are also in talks about developing their own central bank digital currency (CBDC). Although this idea was not new, the discussion was brought to the forefront due to Facebook’s aggressive Libra project announcement in June 2019 and the public attention that followed. As of July 2020, at least 36 central banks have published some sort of CBDC framework. While each nation has a slightly different motivation behind its currency digitization initiative, ranging from payment safety, transaction efficiency, easy monetary implementation, or financial inclusion, these central banks are committed to deploying a new digital payment infrastructure. When it comes to the technical architectures, research from BIS indicates that most of the current proofs-of-concept tend to be based upon distributed ledger technology (permissioned blockchain)19.

https://preview.redd.it/lgb1f2rw19p51.png?width=700&format=png&auto=webp&s=040bb0deed0499df6bf08a072fd7c4a442a826a0
These institutional experiments are laying an essential foundation for an improved global payment infrastructure, where instant and frictionless cross-border settlements can take place with minimal costs. Of course, the interoperability of private DLT tokens and public blockchain stablecoins has yet to be explored, but the innovation with both public and private blockchain efforts could eventually merge. This was highlighted recently by the Governor of the Bank of England who stated that “stablecoins and CBDC could sit alongside each other20”. One thing for certain is that crypto dollars (or other fiat-linked digital currencies) are going to play a significant role in our future economy.

Future Opportunities

There is never a dull moment in the crypto sector. The industry narratives constantly shift as innovation continues to evolve. Twelve years since its inception, Bitcoin has evolved from an abstract subject to a familiar concept. Its role as a secured, scarce, decentralized digital store of value has continued to gain acceptance, and it is well on its way to becoming an investable asset class as a portfolio hedge against asset price inflation and fiat currency depreciation. Stablecoins have proven to be useful as proxy dollars in the crypto world, similar to how dollars are essential in the traditional world. It is only a matter of time before stablecoins or private digital tokens dominate the cross-border payments and global remittances industry.
There are no shortages of hypes and experiments that draw new participants into the crypto space, such as smart contracts, new blockchains, ICOs, tokenization of things, or the most recent trends on DeFi tokens. These projects highlight the possibilities for a much more robust digital future, but the market also needs time to test and adopt. A reliable digital payment infrastructure must be built first in order to allow these experiments to flourish.
In this paper we examined the historical background and economic reasons for the U.S. dollar’s dominance in the world, and the probable conclusion is that the demand for U.S. dollars will likely continue, especially in the middle of a global pandemic, accompanied by a worldwide economic slowdown. The current monetary system is far from perfect, but there are no better alternatives for replacement at least in the near term. Incremental improvements are being made in both the public and private sectors, and stablecoins have a definite role to play in both the traditional and the new crypto world.
Thank you.

Reference:
[1] How the US dollar became the world’s reserve currency, Investopedia
[2] The dollar is in high demand, prone to dangerous appreciation, The Economist
[3] Dollar dominance in trade and finance, Gita Gopinath
[4] Global trades dependence on dollars, The Economist & IMF working papers
[5] Total credit to non-bank borrowers by currency of denomination, BIS
[6] Biggest stock exchanges in the world, Business Insider
[7] McKinsey Global Private Market Review 2020, McKinsey & Company
[8] Central banks current interest rates, Global Rates
[9] Venezuela hyperinflation hits 10 million percent, CNBC
[10] Lebanon inflation crisis, Reuters
[11] Venezuela cryptocurrency market, Chainalysis
[12] The most used cryptocurrency isn’t Bitcoin, Bloomberg
[13] Trading volume of all crypto assets, coinmarketcap.com
[14] Tether US dollar peg is no longer credible, Forbes
[15] New crypto derivatives let you bet on (or against) Tether’s solvency, Coindesk
[16] Remittance Price Worldwide, The World Bank
[17] Interbank Information Network, J.P. Morgan
[18] Jamie Dimon interview, CBS News
[19] Rise of the central bank digital currency, BIS
[20] Speech by Andrew Bailey, 3 September 2020, Bank of England
submitted by Tokenomy to tokenomyofficial [link] [comments]

Backtesting software

Hello,

New here. I would be interested in back testing a certain strategy/system for forex trading, but this situation comes with some issues.
The strategy is fairly complex, it uses >10 indicators, it should be tested thoroughly in long periods of time (10 years minimum) and it has it's own general / special rules (written trading rules, not parameters), that apply to every indicator / trade and / or opportunity.
Manually back testing the strategy is tedious and takes too much time, wonder if there is an easier way.
I do not know how to code, therefore I cannot code it myself, but I would be interested in some software for novice users.

I imagine something like this?
IF is X, then do Y / lookfor Z.... or something.....

Any help?

Thanks
submitted by Cosim15 to Forex [link] [comments]

COSS exchange is ready to resume operations. Please read the following announcement carefully.


https://preview.redd.it/afpkritv1fk41.png?width=3556&format=png&auto=webp&s=9296f8b63636c34729c10d8575a37dcd65e76a6f
https://medium.com/coss-official/update-coss-exchange-relaunch-roadmap-18a5ff7549a3/
Hello everyone.
COSS exchange is ready to resume operations shortly after almost 8 weeks of downtime.
In this update, we discuss the following:

The Downtime

COSS exchange was taken offline on January 7th 2020 with immediate notice to all users. The plan was to begin migration to a white label platform after proceeding with account-level snapshots.
The migration was halted mid-way as COSS entered and finalised acquisition negotiations, followed by audits of the existing technology, user data and wallets.
With the audits completed, the new management decided to do away with the old exchange platform and introduce a much more advanced engine for its users.
This is the platform which goes online this week with many added features including derivatives with up to 100x leverage, as well as an Exchange Swap Engine for instant conversions.

New Management

We apologise for the downtime — unconditionally.
The decision to shut down the exchange was not in our control and we, unfortunately, were handed over a shut exchange. We have done our best to re-enable the exchange for all users quickly and assure you that such missteps will be avoided at all costs in the future.
The new COSS is a group of investors, professional traders, and financial technology specialists. Who strongly believes in the original vision of COSS — a one-stop platform for modern digital assets whose success is dependent on and shared with all its users — a unique approach to decentralised finance.
The idea is in line with the original concept of creating a shared ‘digital economy’ instead of mirroring a system where the traditional institutional lenders and service providers benefit while the people pay fees to use and access their own assets.
The investment group has appointed a board of directors and is currently assessing nominations for the role of CEO.
The board will leave the day-to-day operations to the CEO and their team with a clear mandate — to restore and build COSS the brand for success.
Rune and the previous technology, operations and marketing teams will no longer be involved with COSS. We appreciate their work in the past and wish them all the best for future endeavours.
Satyarth will continue to remain on board with us and support the community management, marketing and PR team.

New Technology Partner

The new management has carefully evaluated several options to ensure COSS has a stable, scalable and continuously improving technology platform.
We have partnered with XHUB — a financial and trading technology company.
The XHUB team has vast experience in working with brokers, hedge funds, and proprietary trading firms.
XHUB maintains one of the largest cryptocurrency liquidity and order routing systems in the industry, and a trading platform which has been exclusively and extensively used in-house by large trading firms.
The XHUB technology team will extend its support to COSS API consumers and encourage them to keep building trading applications for the community. Consumers will have access to extensive historical and real-time market data which will allow them to create advanced strategies supported by back-testing.

Roadmap

A general roadmap of the board’s vision for the immediate future is included below. We remain focused on ensuring that COSS provides a reliable trading platform for retail and professional traders alike.

Q1–2020

Exchange Relaunch
  1. COSS will relaunch the exchange platform and enable full trading on supported pairs
  2. Current COSS account holders will be sent new login credentials via email and an invitation to begin trading
  3. COS holders will be allocated 100% of the fees generated by the exchange until the FSA dashboard is completed and launched
  4. Balance transfers from previous exchange platform are initiated by the account login. This begins the final-phase of the account audit.
  5. Withdrawal of audited portfolios / balances will be available within 48 hrs of the account portfolio transfer
API Release
  1. REST and Websocket access to market data
  2. REST access to account and trade endpoints
  3. Websocket access to account end points
  4. FIX Engine quote and trade functional release
Mobile Trading App (iOS, Android)
  1. Beta release of the full-featured mobile app
  2. Full public launch of the trading app
Listing Policy Release
  1. Compliant with all regulatory requirements
API Community Development
  1. GitHub community to showcase public projects
  2. Technical support
  3. Budget allocated for development competitions

Q2–2020

Mobile Wallet App (v2) (iOS, Android)
  1. Release of the full-featured wallet/payment and proximity peer to peer payment app
Metaquotes MT5
  1. Release full scale derivative trading platform for Windows, iOS and Android
  2. Enabling:
Regulatory Licensing
  1. Leverage trading will be reduced as the final step for licensing
Vendor and Payments API
  1. Release of web and mobile payment processing for merchants
Roadmap will be updated in the first and third quarter every year, and will cover plans for that period.
Relaunch FAQ
The exchange will be operational on 4th March, 2020.
To adhere to existing anti-money laundering, counter-terrorism financing and know your customer regulations, existing users will need to complete level-1 KYC. This can be done with a single government-issued photo identity document.
Final phase account audit clearance is subject to KYC approval.
COS token trading will be available on the COS_USD pair. More pairs will be added as trading activity improves.
Maker and taker fees will be set at 0.05% and 0.1% respectively.
Trading fee discount and negative maker fees will be discontinued.
An updated COS holding based fee tier system may be introduced in the future.
The Fee Split Allocation (FSA) dashboard is under development. However, FSA will be tracked and accrue from day one. COS held in private wallets will need to be re-identified and linked to your new user accounts once the dashboard is launched.
We will initiate a delisting procedure for some assets. A complete list of pairs and the withdrawal process for the same will be released at a later date.
Crypto deposits will remain at 0 fees. A fee schedule for crypto withdrawals will be published on the website.
Fiat deposits will be available via Epay and transfers from Epay wallet to COSS will be at 0 fees.
Deposits through credit and debit cards will be introduced at 4% fees.
We will add more fiat options including withdrawals in the coming weeks.
Thank you for all your support and feedback.
We are expecting a rush to access COSS accounts and will complete verification for all applicants as quickly as possible. We apologise for any unforeseen delays during the process. You can reach us on [[email protected]](mailto:[email protected]) in case you require any further assistance.
submitted by satyarthm to CossIO [link] [comments]

Immediate Aftermath : The more data we collect and analyze, the clearer the picture becomes.

This is the updated first part of the list that has recorded the notable events as the world deals with the COVID-19 pandemic. [2nd Part] ― The LINKS to events and sources are placed throughout the timeline.
------------------------
The More Data We Collect and Analyze, the Clearer the Picture Becomes.
Someone threw a stone in a pond a long way away. And we're only just feeling the ripples. — Fukuhara from Giri/Haji, Netflix series
------------------------
On Jan 30, Italian PM announced that Italy had blocked all flights to and from China. While Italy has banned people from air-travelling to China, however according to IATA data, there's no measurement implemented for air-travellers from China into Italy till the Mar 07. Especially for Chinese people who have EU passports.
On Jan 31, the US announced the category-I travel restrictions, barring all foreigners who have been in China for the past 14 days, with measures including the refusal of visas and mandatory quarantine.
• "Because the US focused on China and didn't expect the infected people's entry from Europe and the Middle East, the Maginot Line was breached from behind. And so little of credible data at the beginning made the US government to miscalculate its strategic response to the virus." — Dr. Zhang Lun, currently a visiting scholar at Harvard (economics & sociology), during the interview with ICPC on Mar 29.
Also on Jan 31, the WHO changed its tune and declared the coronavirus outbreak a Global Public Health Emergency of international concern (PHEIC).
Decisions on a PHEIC always involve politics .... West African countries discouraged a declaration in 2014 after they were hit by the largest Ebola virus outbreak on record, mainly because of concern about the economic impact.
------------------------
On Feb 02, regarding the US category-I travel restrictions, Kamala Harris, the former Democratic presidential candidate, declared on Twitter:
Since 2017, Trump’s travel bans have never been rooted in national security—they’re about discriminating against people of color. They are, without a doubt, rooted in anti-immigrant, white supremacist ideologies. This travel ban is no different.
On Feb 03, criticizing Trump for his travel restrictions continues. Chinese foreign ministry spokeswoman Hua Chunying (华春莹), a Peking University professors James Liang (梁建章), New York Times, the Nation, OBSERVER, the Boston Globe, Yahoo, and Daily Kos were saying,
it's a "panicky" decision and "racist" or it's "cruel and callous," he's stoking fear for political gains, and the president is "inappropriately overreacting." And professors Liang even said the US ban "will hurt goodwill and cooperation [with China] in the future." [1] [2] [3] [4] [5] [6] [7] [8] [9]
Also on Feb 03, Mr. Tedros of the WHO said there's no need for travel ban measure that "unnecessarily interfere with international travel and trade" trying to halt the spread of the virus.
China's delegate took the floor ... and denounced measures by "some countries" that have denied entry to people holding passports issued in Hubei province - at the centre of the outbreak - and to deny visas and cancel flights.
Also on Feb 03, China is expected to gradually implement a larger stimulus packages (in total) than a USD $572 billion from 2008. — We'd never find out but my guess is that the fund will probably go to Shanghai clique.
On Feb 04, The FDA has given emergency authorization to a new test kit by the CDC that promises to help public health labs meet a potential surge in cases.
The speed ... pushing through a new diagnostic test shows just how seriously they’re taking the potentially pandemic threat of 2019-nCoV. It’s also a sign that the world is starting to learn how to deal with an onslaught of new pathogens.
Also on Feb 04, the Wuhan Institute of Virology and China's Academy of Military Medical Sciences (AMMS, Chief Chen Wei belongs to) have jointly applied to patent the use of Remdesivir. Scientists from both institutes said in a paper published in Nature’s Cell Research that they found both Remdesivir and Chloroquine to be an effective way to inhibit the coronavirus.
On Feb 06, Jamestown Foundation, a Washington-based research & analysis unit, noted that with State Council of PRC praising his performance of containing the pandemic situation, the council expanded Li Keqiang's political control over Politburo Standing Committee of CCP. (Li Keqiang = Communist Youth League = Shanghai clique)
Also, on Feb 06, as the US evacuation planes leave China, the wave of the US evacuees have arrived who are met by the CDC personnel at the quarantine sites for screening, and those who were suspected of infection will be placed under quarantine for 14 days.
Also, on Feb 06, a CDC-developed lab test kit to detect the new coronavirus began shipping to qualified US laboratories and international ones. — However, on Feb 12, the CDC said some of the testing kits have flaws and do not work properly. The CDC finally ended up shipping the working test kits for mass testings on Feb 27. This was three weeks later than originally planned.
On Feb 07, China National Petroleum has recently declared Force Majeure on gas imports. They are trying to create a breathing room for their foreign exchange reserves shortage. China's foreign exchange reserves fell to mere USD $3.1 trillion in Oct. 2019.
On the same day, Bloomberg reported that PetroChina has directed employees in 20 countries to buy N95 face masks and send them home in China. The goal is to get 2 million masks shipped back. You can also find YouTube videos that show Overseas Chinese are scouring the masks at the Home Depot to ship them to China (the video in Korean). Also Chris Smith is pissed.
On Feb 09, Trump renews his national emergency on its southern border, and Elizabeth Goitein from the Brennan Center for Justice, published an opinion article on New York Times titled "Trump Has Abused This Power. And He Will Again if He’s Not Stopped."
On Feb 10, Dr. Tedros said that an advance three-person team of the WHO arrived in Beijing for a joint mission to discuss with Chinese officials the agenda and questions. Then, the joint mission of about 10 international experts will soon follow, he said. — Those WHO experts ended up visiting Chinese epicentre for the first time on Feb 24.
On Feb 12, the US targets Russian oil company for helping Venezuela skirt sanctions. The US admin seemingly tried to secure leverage against Russia after noticing something suspicious was up.
On the same day, Trump told Reuters "I hope this outbreak or this event (for the US) may be over in something like April." — Dr. Zhong Nanshan (钟南山), China's top tier SARS-hero doctor, also said "the peak of the virus (for China) should come in mid to late February, followed by a plateau or decrease," adding that his forecast was based on on mathematical modelling and data from recent events and government action.
On Feb 13, Tom Frieden who is a former US CDC chief and currently the head of public health nonprofit Resolve to Save Lives, said:
As countries are trying to develop their own control strategies, they are looking for evidence of whether the situation in China is getting worse or better. [But] We still don't have very basic information. [since the WHO just entered China] We hope that information will be coming out.
On the same day, the CDC reports that the 15th case in the US was confirmed. The patient was a part of group who were under a federal quarantine order at the JBSA-Lackland base because of a recent trip to Hubei Province, China.
By Feb 13, China hasn't accepted the US CDC's offer to send top experts, and they haven't released the "disaggregated" data (specific figures broken out from the overall numbers) even though repeatedly been asked.
On Feb 14, CCP's United Front posted an article on its official website, saying (Eng. text by Google Translation):
Fast! There is no time difference to raise urgently needed materials! Some Overseas Chinese have used their professions in the field of medicine in order to purchase relevant materials Hubei province in short of supply (to send them to China). .... Some Overseas Chinese took advantage of the connection resources, opened green transportation channels through our embassies and consulates abroad, and their related enterprises, and quickly sent large quantities of medical supplies (to China), making this love relay link and cooperation seamless.
On Feb 18, Reuters reports that 3M is on the list of firms eligible for China loans to ease coronavirus crisis.
There is no indication from the list that loans offered will necessarily be sought, or that such firms are in any financial need. The Bank of Shanghai told Reuters it will lend 5.5 billion yuan ($786 million) to 57 firms on its list.
On Feb 21, Xi Jinping writes a thank-you letter to Bill Gates for his foundation’s support to China regarding COVID-19 outbreak.
On Feb 24, China was rumoured on Twitter to delay the phase one trade deal implementation indefinitely which includes the increase of China's purchasing American products & services by at least $200 billion over the next two years.
Also on Feb 24, S&P 500 Index started to drop. Opened with 3225.9 and closed 3128.2. By the Mar 23, it dropped to 2208.9.
Also on Feb 24, China's National Health Commission says the WHO experts have visited Wuhan city for the first time, the locked-down central Chinese city at the epicentre, inspecting two hospitals and a makeshift one at a sports centre.
On Feb 26, IF the picture that has been circulated on Twitter were real, then chief Chen Wei and her team have developed the first batch of COVID-19 vaccine within time frame of a month.
On the same day, the CDC's latest figures displays 59 people in the US who have tested positive for COVID-19.
Also on Feb 26, the Washington Post published an article that says:
.... the WHO said it has repeatedly asked Chinese officials for "disaggregated" data — meaning specific figures broken out from the overall numbers — that could shed light on hospital transmission and help assess the level of risk front-line workers face. "We received disaggregated information at intervals, though not details about health care workers," said Tarik Jasarevic of the WHO. — The comment, in an email on Feb 22 to the Post, was one of the first instances that the WHO had directly addressed shortcomings in China's reporting or handling of the coronavirus crisis.
On Feb 27, after missteps, the CDC says its test kit is ready and the US started to expand testing.
On Feb 28, China transferred more than 80,000 Uighurs to factories used by global brands such as Apple, Nike, & Volkswagen & among others.
Also on Feb 28, the WHO published the official report of the WHO-China joint mission on coronavirus disease 2019. (PDF)
On Feb 29, quoting Caixin media's investigation published on the same day, Lianhe Zaobao, the largest Singapore-based Chinese-language newspaper, published an article reporting the following:
Dr. Li Wenliang said in the interview with Caixin media; [in Dec 2019] another doctor (later turned out to be Dr. Ai Fen) examined and tried to treat a patient who exhibited SARS-like symptoms which akin to influenza resistant to conventional treatment methods. And "the family members who took care of her (the patient) that night also had a fever, and her other daughter also had a fever. This is obviously from person to person" Dr. Li said in the interview."
------------------------
On Mar 01, China's State Council super tighten up their already draconian internet law.
On the same day, Princelings published an propaganda called "A Battle Against Epidemic: China Combating COVID-19 in 2020" which compiles numerous state media accounts on the heroic leadership of Xi Jinping, the vital role of the Communist Party, and the superiority of the Chinese system in fighting the virus.
Starting on Mar 03, the US Fed has taken two significant measures to provide monetary stimulus. It's going to be no use as if a group of people with serious means are manipulating the markets to make sure MM will have liquidity concerns when they need it most.
On Mar 04, Xinhua News, China's official state-run press agency posted an article "Be bold: the world should thank China" which states that
If China retaliates against the US at this time, it will also announce strategic control over medical products, and ban exports of said products to the US. ... If China declares today that its drugs are for domestic use only, the US will fall into the hell of new coronavirus epidemic.
On Mar 05, Shanghai Index has recovered the coronavirus loss almost completely.
On Mar 07, Saudi's Ahmed bin Abdulaziz and Muhammad bin Nayef were arrested on the claims of plotting to overthrow King Salman. — Ahmed bin Abdulaziz is known to have very tight investment-interest relationship with Bill Gates, Bill Browder, Blackstone, & BlackRock: One common factor that connects these people is China.
On Mar 08, the Russia–Saudi oil price war has begun. The ostensible reason was simple: China, the biggest importer of oil from Saudi and Russia, was turning back tankers while claiming that the outbreak forced its economy to a standstill.
On Mar 10, the Washington Post published the article saying that the trade group for manufacturers of personal protective equipment urged in 2009 "immediate action" to restock the national stockpile including N95 masks, but it hasn't been replenished since.
On Mar 11, the gentleman at the WHO declares the coronavirus outbreak a "Global Pandemic." He called on governments to change the course of the outbreak by taking "urgent and aggressive action." This was a full twelve days after the organization published the official report regarding the situation in China.
On Mar 13, the US admin declared a National Emergency and announced the plan to release $50 billion in federal resources amid COVID-19.
Also on Mar 13, China's Ministry of Commerce states that China is now the best region for global investment hedging.
On Mar 15, Business Insider reports that Trump tried to poach German scientists working on a coronavirus vaccine and offered cash so it would be exclusive to the US. The problem is the official CureVac (the German company) twitter account, on Mar 16, 2020, tweeted the following:
To make it clear again on coronavirus: CureVac has not received from the US government or related entities an offer before, during and since the Task Force meeting in the White House on March 2. CureVac rejects all allegations from press.
On Mar 16, the fan club of European globalists has published a piece titled, "China and Coronavirus: From Home-Made Disaster to Global Mega-Opportunity." The piece says:
The Chinese method is the only method that has proved successful [in fighting the virus], is a message spread online in China by influencers, including many essentially promoting propaganda. ... it is certainly a message that seems to be resonating with opinion leaders around the world.
On the same day, unlike China that had one epicentre, Wuhan city, the US now overtakes China with most cases reporting multiple epicentres simultaneously.
Also on Mar 16, the US stocks ended sharply lower with the Dow posting its worst point drop in history. But some showed a faint hint of uncertain hope.
On Mar 17, according to an article on Chinese version of Quora, Zhihu, chief Chen Wei and her team with CanSino Biologics officially initiated a Phase-1 clinical trial for COVID-19 vaccine at the Wuhan lab, Hubei China, which Bloomberg News confirmed. — Click HERE, then set its time period as 1 year, and see when the graph has started to move up.
Also on Mar 17, China's state media, China Global TV Network (CGTN), has produced YouTube videos for Middle Eastern audiences to spread the opinion that the US has engineered COVID-19 events.
Also on Mar 17, Al Jazeera reported that the US President has been criticized for repeatedly referring to the coronavirus as the "Chinese Virus" as critics saying Trump is "fueling bigotry."
• China's Xinhua News tweeted "Racism is not the right tool to cover your own incompetence."
• Tucker Carlson asked: "Why would America's media take China's side amid coronavirus pandemic?"
• Also, Mr. Bill Gates: "We should not call this the Chinese virus."
On Mar 19, for the first time, China reports zero local infections.
Also on Mar 19, Al Jazeera published an analysis report, titled "Coronavirus erodes Trump's re-election prospects."
On Mar 22, Bloomberg reports that China's mobile carriers lost 21 million users during this pandemic event. It's said to be the first net decline since starting to report monthly data in 2000.
On Mar 26, EURACTV reports that China cashes in off coronavirus, selling Spain $466 million in supplies. However, Spain returns 9,000 "quick result" test kits to China, because they were deemed substandard. — Especially the sensibility of the test was around 30 percent, when it should be higher than 80 percent.
------------------------
On Apr 03, Germany and other governments are bolstering corporate defenses to address worries that coronavirus-weakened companies could be easy prey for bargain hunting by China's state owned businesses.
On Apr 05, New York Times says "Trump Again Promotes Use of Unproven Anti-Malaria Drug (hydroxychloroquine)."
On Apr 06, a Democratic State Rep. Karen Whitsett from Detroit credits hydroxychloroquine and President Trump for "saving her in her battle with the coronavirus."
On Apr 07, the US CDC removed the following part from its website.
Although optimal dosing and duration of hydroxychloroquine for treatment of COVID-19 are unknown, some U.S. clinicians have reported anecdotally different hydroxychloroquine dosing such as: 400mg BID on day one, then daily for 5 days; 400 mg BID on day one, then 200mg BID for 4 days; 600 mg BID on day one, then 400mg daily on days 2-5.
------------------------
☞ If there were ever a time for people not to be partisan and tribal, the time has come: We need to be ever vigilant and attentive to all kinds of disinformation & misinformation to see it better as well as to be sharp in our lives. — We really do need to come together.
☞ At first, I was going to draw up a conspiracy theory-oriented list focused on Team-Z, especially Mr. Gates. However, although it's nothing new tbh, recently many chats and discussions seem overflowing with disinformation & misinformation which is, in my opinion, particularly painful at a time like this. Hence, this post became a vanilla list that's just recorded the notable events. — We all are subject to misinformation, miscalculation, and misjudgment. But the clearer the picture becomes the better we can identify Funkspiel.
------------------------
Immediate Aftermath pt.2.a
------------------------
Feasible Timeline of the Operation
------------------------
☞ Go Back to the Short Story.
----
submitted by vanillabluesea to conspiracy [link] [comments]

Best Trading Indicators  The Best Trading System That ... BEST INDICATOR FOR SCALPING! Forex indicators mt4! - YouTube MOST PROFITABLE FOREX TRADING SYSTEM - YouTube How to Backtest Trading Systems, Part 1 - YouTube How to BACKTEST a Forex Trading Strategy - YouTube TOP 10 BEST FREE FOREX DOWNLOAD INDICATORS and SYSTEMS ... Best Forex Tradingview Indicator - Complete forex trading system tradingview indicator tutorial

Forex indicators that are being shared here are dedicated specifically for Metatrader MT4 and MT5 trading platform. ... installed and tested. This is exactly what we have done. Each indicator listed here at ForexRacer comes with further explanation and trading instructions that you should read and get know with before you actually really use it. What Are Standard MT4 Indicators? There are a ... Alternatively, new strategies can also be tested before using them in the live markets. Depending on the type of back testing software used in Forex trading, traders can get a wide range of indicators, such as: Total Return on Equity (ROE): Returns, expressed in terms of percentage of the total equity invested. Total Profit and Loss (P/L): Total profits and losses generated by a strategy ... 8 Proven Best Forex Indicators Tested and Reviewed. For many traders, Forex indicators still play an emphatic role in their daily trading routine. The purpose of putting together this page is to explain the benefits and drawbacks of many different indicators that we’ve been reviewing over the years. Depending on your personal trading approach, and stylistic tendencies, there are hundreds of ... Software that will allow you to find the working methods and dismiss the losing ones while you backtest your strategies. Get Forex Tester, the best trading simulator for backtesting, a training platform and a prediction app all in one, and make every trade work for your total success on the currency market This article will review profitable Forex indicators, to assess which indicator is the most profitable for professional traders.Find out how to find profitable Forex indicators by backtesting, learn about why you should consider using the Ichimoku Kinko Hyo indicator, and more!. Getting involved in the financial markets has never been easier than it is today. It uses six different high-quality indicators to serve its user as much market information as it can for the decision making purposes about trade entries. We’ve studied this strategy, back-tested its output and reviewed the user’s experience. According to our study, this strategy is ideal for any trend loving traders with higher success rate and its rating stands at 9.85 out of 10. Forex ... FREE DOWNLOAD NOW – The World’s 10 Most Popular Forex Trading Systems Revealed.The systems have been developed, tested, and optimized for use on the 1 hour time frame, but its could actually be just as easily adapted for use on any other time frame either higher or lower. Like in any other business, experience is the key in order to be successful in forex trading. Developing a trading strategy over time, that will define the way how you approach trading, is just the first step in becoming a profitable trader.. Your trading strategy might not work the way you imagined, and it can turn out that the strategy is not profitable at all. If you have already had the opportunity to do some research on the indicators that forex traders use, you probably know which ones are the most popular. However, do not give in to the popularity of some outdated tools, such as Stochastics, Japanese Candlesticks, or RSI, because you may certainly have more luck with some of the more modern indicators designed specifically to trade in the forex ... Here is our tried and tested list of the Top 10 best performing non-repainting Forex indicators for MT4 that actually work. This list will be updated every six months with new indicators added to the list so feel free to submit your suggestions and indicators to our staff for review by posting your suggestion up on either one of our Social Media pages: Twitter and Facebook.

[index] [26273] [11503] [29238] [5527] [16699] [11110] [980] [7241] [19017] [9299]

Best Trading Indicators The Best Trading System That ...

I am giving you a Forex Trading System worth Thousands of Dollars for FREE! YOU MUST WATCH IT UNTIL THE END, its very important. This is a very versatile sys... Get more information about IG US by visiting their website: https://www.ig.com/us/future-of-forex Get my trading strategies here: https://www.robbooker.com C... All about Trading in Forex and Binary Option Marked.Video Name:TOP 10 BEST FREE FOREX DOWNLOAD INDICATORS and SYSTEMS ... You can buy the FULL version of the robot from the link http://tutshara.com.ua/BS/ ===== DOWNLOAD our new Battle... Best tradingview indicator - One of the best Tradingview indicators developed by one of our traders. This video covers some basic back testing on the 4hr chart with AUDUSD. Best Trading Indicators is price action! PRICE is the ultimate trading indicator and best trading system. In our HOW TO TRADE LIKE A BOSS SERIES I'm going to... This video will show you How to Backtest a Forex Trading Strategy, as well as 3 TIPS on BACKTESTING... Trading Platform I Use: https://www.tradingview.com/...

https://binaryoptiontrade.biascupunapne.gq